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ABSTRACT Host-bacterial interactions over the course of aging are understudied due
to complexities of the human microbiome and challenges of collecting samples that
span a lifetime. To investigate the role of host-microbial interactions in aging, we per-
formed transcriptomics using wild-type Caenorhabditis elegans (N2) and three long-lived
mutants (daf-2, eat-2, and asm-3) fed Escherichia coli OP50 and sampled at days 5, 7.5,
and 10 of adulthood. We found host age is a better predictor of the E. coli expression
profiles than host genotype. Specifically, host age was associated with clustering (per-
mutational multivariate analysis of variance [PERMANOVA], P = 0.001) and variation
(Adonis, P = 0.001, R2 = 11.5%) among E. coli expression profiles, whereas host genotype
was not (PERMANOVA, P . 0.05; Adonis, P . 0.05, R2 = 5.9%). Differential analysis of
the E. coli transcriptome yielded 22 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways and 100 KEGG genes enriched when samples were grouped by time point
[LDA, linear discriminant analysis; log(LDA), $2; P # 0.05], including several involved in
biofilm formation. Coexpression analysis of host and bacterial genes yielded six modules
of C. elegans genes that were coexpressed with one bacterial regulator gene over time.
The three most significant bacterial regulators included genes relating to biofilm forma-
tion, lipopolysaccharide production, and thiamine biosynthesis. Age was significantly
associated with clustering and variation among transcriptomic samples, supporting the
idea that microbes are active and plastic within C. elegans throughout life. Coexpression
analysis further revealed interactions between E. coli and C. elegans that occurred over
time, building on a growing literature of host-microbial interactions.

IMPORTANCE Previous research has reported effects of the microbiome on health span
and life span of Caenorhabditis elegans, including interactions with evolutionarily con-
served pathways in humans. We build on this literature by reporting the gene expres-
sion of Escherichia coli OP50 in wild-type (N2) and three long-lived mutants of C. elegans.
The manuscript represents the first study, to our knowledge, to perform temporal host-
microbial transcriptomics in the model organism C. elegans. Understanding changes to
the microbial transcriptome over time is an important step toward elucidating host-mi-
crobial interactions and their potential relationship to aging. We found that age was sig-
nificantly associated with clustering and variation among transcriptomic samples, sup-
porting the idea that microbes are active and plastic within C. elegans throughout life.
Coexpression analysis further revealed interactions between E. coli and C. elegans that
occurred over time, which contributes to our growing knowledge about host-microbial
interactions.
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Approximately 40% of U.S. adults and 80% of those over the age of 65 have multi-
ple chronic conditions (1). The average American is getting older, and the census

bureau projects there will be more adults over the age of 65 than children under 18 by
2034 (2). This marks an important trend for the future of health care, as chronic and
mental health conditions already account for 90% of the nation’s $3.8 trillion annual
health care costs (1, 3). Aging research is at the forefront of mitigating this trend in
search of ways to promote healthy aging and extending health span, which is the
number of years an individual is healthy and disease free.

Analysis of the microbiome is an emerging area of aging research since it has been
shown to affect health span and to change over the course of aging (4–7). In fact, the
microbiome affects all nine hallmarks of aging (8, 9), including genomic instability (10),
telomere attrition (9), epigenetic alterations (11, 12), loss of proteostasis (13, 14),
deregulated nutrient sensing (15, 16), mitochondrial dysfunction (17), cellular senes-
cence (18), stem cell exhaustion (19), and altered intercellular communication (20).
Disentangling these effects in humans can be very challenging because of variability in
microbiome composition caused by lifestyle (21–23), difficulty collecting samples that
span a lifetime, and the complexity of the human microbiome.

Using a Caenorhabditis elegans model fed Escherichia coli OP50 systematizes the
study of host-microbial interactions and aging by minimizing complexity, sampling dif-
ficulty, and external variables. The C. elegans microbiome has been associated with
increased availability of bacterial metabolites like amino acids, nitrous oxide, iron, and
folic acid, of which each affects host health span and life span (15, 24–26). Bacteria
within C. elegans have also been shown to metabolize drugs, such as the cancer thera-
peutic 5-fluorouracil (27) and the antidiabetic metformin (28) into metabolites that al-
ter host physiology. In reaction to pathogenic bacteria, C. elegans produces reactive ox-
ygen species as an immune response, a process necessary for healthful aging amid
bacterial stressors (29). These examples in C. elegans are just several in a growing list of
host-microbial interactions important for aging.

We investigated bacterial gene expression changes over time and sought to under-
stand how those changes could contribute to host aging. To do this investigation, we
used host-bacterial transcriptomics, which provides a comprehensive view of host-mi-
crobial activity at the level of mRNA. Specifically, we looked at the transcriptome of
four C. elegans animals (wild-type N2 and long-lived daf-2 [30], eat-2 [31], and asm-3
[32]) and their resident bacteria (E. coli OP50) at days 5, 7.5, and 10 of adulthood. This
time frame represents the duration from fully established bacterial colonization
through host senescence (33). The mutants selected represent two well-studied mech-
anisms of life span extension in C. elegans, as follows: caloric restriction (eat-2) and
mutations in insulin/insulin-like growth factor 1 (IGF-1) signaling (asm-3 and daf-2)
(34). We found expression changes over time in such genes involved in amino acid me-
tabolism, biofilm formation, and other functions. Observing these changes over time
unveiled a previously unknown role of host-microbial interactions in aging research.
While host genotype has been shown previously to affect bacterial transcriptomics per-
taining to gene presence and absence in a C. elegans model (4), to the best of our
knowledge, we are the first to report age-dependent host-microbial transcriptomics
profiles in the C. elegans model organism.

RESULTS
Overview of the transcriptomic profile. In total, 42 samples were sequenced and

analyzed, with each sample yielding an average of 16 million sequences. Sequencing
data were filtered to remove host RNA, rRNA, and bacterial sequences other than E.
coli OP50 (Table 1). Of the remaining sequences, those mapping to C. elegans
(n = 57,508,699) and E. coli OP50 (n = 5,013,461) were used for subsequent analysis.

Age is a better predictor of the microbial transcriptome than host genotype.
Our experimental design had two independent variables, namely, age (5-, 7.5-, and 10-
day adults) and host genotype (N2, daf-2, asm-3, and eat-2). We performed an analysis
of the bacterial transcriptome based on presence-absence and expression enrichment.
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Comparisons across age and genotypes yielded unique transcriptomes based on
enrichment comparisons (Table 2) and presence-absence comparisons of the core
(.70% of samples in that genotype) transcriptome (Fig. 1). Presence-absence compari-
sons of the core transcriptome between mutants yielded 195 uniquely expressed
genes (Fig. 1A), whereas comparisons across time yielded 256 unique genes (Fig. 1B).
Not all of these genes were significantly enriched in expression compared with the
other mutants due to low expression levels and high variance, but these results indi-
cate that age had a stronger relationship with our residential bacterial transcriptome
than genotype.

Enrichment analysis of the bacterial transcriptome using linear discriminant analysis
(LDA) effect size (LEfSe) [log(LDA), $2; P # 0.05] yielded multiple enriched genes and
pathways (Table 2; Table S1 to S38 in the supplemental material). Age comparisons of
all samples collated yielded many more enriched genes (n = 100) and pathways
(n = 22) than across genotype comparisons (n = 15 and 4, respectively). This trend con-
tinued after data visualization (nonmetric multidimensional scaling [NMDS] and partial
least squares-discriminant analysis [PLS-DA]) and distance matrix analysis (permuta-
tional multivariate analysis of variance [PERMANOVA]) of expression data across ages
and genotypes. Microbial transcriptomes did not cluster based on genotype
(PERMANOVA, P . 0.05) using NMDS or PLS-DA analysis (Fig. 2A and B). In contrast,
NMDS and PLS-DA with samples grouped by age yielded distinct clustering
(PERMANOVA, P = 0.001) (Fig. 2C and D). Furthermore, PLS-DA had lower overall error
for the model separating samples by time point (see Fig. S1 in the supplemental mate-
rial) than the model for samples by genotype (see Fig. S2 in the supplemental material).
Within each genotype, clustering based on time point was also observed in PLS-DA plots

TABLE 1 RNA Sequencing results of all experimental sample groups

Experimental
group

No. of
samples

Total raw
reads

Total reads
posttrimming

rRNA
reads
removed

Human
reads
removed

Other
bacterial
reads
removed

C. elegans
mapped
reads

E. coli OP50
mapped
reads

Total
identified
E. coli KEGG
orthologs

N2 Day 5 3 51,368,564 48,624,914 35,588,703 436,254 4,838,569 4,043,440 336,432 2,044
N2 Day 7.5 3 101,113,426 92,869,775 46,093,638 368,780 33,172,149 7,238,186 337,452 2,176
N2 Day 10 3 21,180,306 19,256,960 9,003,190 1,342 9,022,173 489,464 76,088 2,203
daf-2 Day 5 3 94,768,625 87,801,144 56,068,764 187,101 13,212,271 12,384,743 314,527 2,250
daf-2 Day 7.5 4 54,563,772 49,966,566 26,890,582 923,883 15,662,740 1,727,284 2,625,785 1,767
daf-2 Day 10 4 41,268,259 39,001,308 16,890,627 128,333 16,153,141 3,543,722 130,296 1,726
eat-2 Day 5 3 32,086,445 30,596,996 18,940,926 801,437 5,532,820 3,014,322 228,419 2,012
eat-2 Day 7.5 3 66,328,124 62,092,391 39,009,811 1,072,618 7,838,332 9,751,033 158,052 2,123
eat-2 Day 10 4 37,241,549 34,866,144 16,696,371 256,920 14,757,095 1,549,659 131,896 1,780
asm-3 Day 5 4 45,874,617 42,901,316 32,280,006 495,422 4,108,678 3,072,654 268,528 1,990
asm-3 Day 7.5 4 57,576,223 53,295,984 28,621,298 311,525 16,566,012 4,089,826 188,066 1,919
asm-3 Day 10 4 76,608,761 70,556,191 36,855,510 359,350 22,502,718 6,604,366 217,920 1,928

TABLE 2 Summary of LEfSe comparisons

Class LEfSe comparison

No. of enriched genes
or pathways
[log(LDA) ‡ 2, P £ 0.05]

Genes Genes across age 100
Genes across mutants 15
Genes across age, genotypes separated 290
Genes with each mutant compared with N2 270
Genes within each mutant compared with N2 across time 885

Pathways Pathways across age 22
Pathways across mutants 4
Pathways across age, genotypes separated 37
Pathways within each mutant compared with N2 15
Pathways within each mutant compared with N2 across time 81

Temporal Transcriptomics of E. coli in C. elegans
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(see Fig. S3 and S6 in the supplemental material), although they had higher error rates
than the time point model made with all samples (see Fig. S7 and S10 in the supplemental
material). These results provide evidence that the E. coli transcriptome was more differentiated
according to host age than to host genotype.

While all mutations were treated as separate for the above PLS-DA and PERMANOVA
analyses, each mutant was also compared to the wild type (N2) for PERMANOVA analysis.
This pairwise analysis addresses the possibility that a shared pathway of two mutants,
namely, asm-3 and daf-2, led to insignificant differences between mutants when col-
lated. Comparisons between mutants and N2 were not statistically significant (Table 3).
In contrast, each time point was statistically significantly different (Table 3). These results
support the idea that age has a larger impact on the microbial transcriptome in our
study than host genotype.

Microbial functional expression changes over time. Partitioning variance based
on time point using PERMANOVA revealed that time point explained 11.4% of the vari-
ation (P = 0.001) in E. coli gene expression, which is almost twice as much as could be
explained by genotype when all samples were used (R2 = 0.059, P = 0.88) or in any of
the four subsets containing only three genotypes (Table 4). In combination, time point
and genotype did explain slightly more variation among samples (13.2%), although
not significantly (P . 0.05), unlike time point by itself. Furthermore, some of the
changes in expression associated with time point have potential implications for host
health. For example, biofilm formation and membrane transport pathways were identi-
fied as differentially expressed when samples were grouped by time point (Fig. 3). Four
amino acid biosynthesis and utilization pathways were also identified as differentially
expressed in that comparison, with three of them having at least one individual gene

FIG 1 Overlap comparison of E. coli core transcriptomes when samples were grouped by genotype (A) and time point (B). Core transcriptomes were genes
(KEGG orthologs) that were expressed in at least 70% of the samples in a group. Overlap was visualized with the eulerr and UpSetR packages in R.
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that was also significantly enriched based on time point (Table S19 and S38). Within
the day 10 time point as well, when mutants were compared to the wild type, glutathi-
one metabolism (ko00480) was found to be significantly more expressed by E. coli in
the asm-3 and daf-2 mutants than by N2. Pathway networks were created for this path-
way, as well as the three differential biofilm pathways for the time point comparison.
These networks revealed multiple genes were expressed within each pathway, contrib-
uting to their enrichment (Fig. S11 and S22 in the supplemental material).

Microbial genes coexpressed with host genes. Changes in bacterial gene expres-
sion could influence host gene expression, including genes related to aging.
Understanding this relationship may provide insight into how gut bacteria affect lon-
gevity. To investigate this possibility, we used the program Lemon-Tree to predict
interactions between hosts and residential bacteria by finding bacterial regulators of C.
elegans gene expression. This analysis revealed six modules of C. elegans genes that

FIG 2 Nonmetric multidimensional scaling and partial least squares discriminant analysis (PLS-DA) plots. (A) NMDS plot of samples colored by genotype. (B)
PLS-DA plot of samples grouped by genotype. (C) NMDS plot of samples colored by time point. (D) PLS-DA plot of samples grouped by time point. NMDS
and PLS-DA analyses were conducted through R using the phyloseq and mixOmics packages with a CPM-normalized table of the KEGG orthologs that were
attributed to E. coli. Ellipses around the groups indicate 95% confidence intervals, meaning a lack of overlap between cohorts indicates a defined gene
expression profile among them.
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each had a bacterial regulator (Table 5; see Table S39 in the supplemental material).
The regulators with the strongest change in expression over time were diguanylate cy-
clase (DgcP) and phosphomethylpyrimidine synthase (ThiC), which had slopes of
20.216 and 20.173, respectively. The regulator UDP-3-O-(3-hydroxymyristoyl) glucosa-
mine N-acyltransferase (LpxD) had a slope of 20.050. DgcP and LpxD pertain to extrac-
ellular expression of the bacteria, being involved with biofilm formation and lipopoly-
saccharide (LPS) production, respectively. ThiC is involved in thiamine production.
Notably, the only two modules with a positive slope pertained to bacterial ribosomes
(Table 5).

DAF-16 transcriptional regulation in C. elegans. When analyzing bacterial coex-
pressional data, we observed an abundance of insulin/IGF-1 signaling pathway (IIS)-
regulated genes with differential expression based on time point. In fact, 80 out of 431
C. elegans genes present in a coexpressed gene module are known to be regulated by
DAF-16, the best studied transcription factor in the IIS pathway and which acts oppo-
site the factor PQM-1 (see Table 40 in the supplemental material) (35). Of these 80
genes, 37 are known to be upregulated (class 1) and 43 are known to be downregu-
lated (class 2) by DAF-16 nuclear localization. Our observed class 1 and class 2 genes
did not separate into different regulatory modules and were present in both positively
and negatively sloping modules. Specifically, 36 class 1 genes were in modules with
negative slopes, while 1 was in a module with a positive slope. Likewise, 33 class 2
genes were in modules with negative slopes, and 10 were in modules with positive
slopes.

TABLE 3 Summary of PERMANOVA comparisons

Group 1 Group 2 Sample size Permutations pseudo-F P value q value
Day 5 Day 10 28 999 2.29852191 0.003 0.0045
Day 5 Day 7.5 27 999 3.466195887 0.002 0.0045
Day 7.5 Day 10 29 999 2.024045542 0.027 0.027
asm-3 daf-2 23 999 1.023993612 0.393 0.924
asm-3 eat-2 22 999 0.970479004 0.443 0.924
asm-3 N2 21 999 0.715339934 0.857 0.924
daf-2 eat-2 21 999 0.771789704 0.767 0.924
daf-2 N2 20 999 0.662995617 0.924 0.924
eat-2 N2 19 999 0.615302894 0.897 0.924
asm-3_5 asm-3_10 8 999 1.580322208 0.102 0.418
asm-3_5 asm-3_7.5 8 999 2.15662942 0.037 0.418
asm-3_7.5 asm-3_10 8 999 0.842597992 0.632 0.83424
daf-2_5 daf-2_10 7 999 1.315018691 0.166 0.498
daf-2_5 daf-2_7.5 7 999 0.964443897 0.484 0.763714286
daf-2_7.5 daf-2_10 8 999 0.829183353 0.687 0.855509434
eat-2_5 eat-2_10 7 999 1.049002005 0.486 0.763714286
eat-2_5 eat-2_7.5 6 999 1.834255897 0.093 0.418
eat-2_7.5 eat-2_10 7 999 1.520096102 0.114 0.418
N2_5 N2_10 6 999 1.673133646 0.094 0.418
N2_5 N2_7.5 6 999 1.657505126 0.09 0.418
N2_7.5 N2_10 6 999 0.842056733 0.61 0.83424

TABLE 4 Summary of Adonis comparisons based on E. coli expression using the Bray-Curtis distance metrica

Dataset Variable Dfb SumsOfSqsb MeanSqsb F.Modelb R2 Pr(>F)b

Full TP 2 0.277480486 0.138740243 2.51984881 0.114435337 0.001
Full TP:genotype 6 0.319590966 0.053265161 0.946338246 0.13180206 0.61
Full Genotype 3 0.14416488 0.04805496 0.800700071 0.059454835 0.88
No_N2 Genotype 2 0.112309675 0.056154837 0.920731037 0.057832208 0.595
No_eat-2 Genotype 2 0.093520559 0.04676028 0.810190806 0.0529184 0.814
No_daf-2 Genotype 2 0.09112913 0.045564565 0.77504047 0.052456064 0.845
No_asm-3 Genotype 2 0.086198993 0.043099496 0.687633722 0.048467118 0.949
aAll samples were included in the “full” data set comparisons, while samples indicated were omitted from the “no-” comparisons.
bDf, degrees of freedom; SumsOfSqs, sums of squares; MeanSqs, mean of squares; F.Model, pseudo-F statistic from model; Pr(.), probability of observing a larger pseudo-F
statistic by chance.

Brycki et al.

Volume 9 Issue 2 e00498-21 MicrobiolSpectrum.asm.org 6

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/s

pe
ct

ru
m

 o
n 

15
 O

ct
ob

er
 2

02
1 

by
 1

99
.8

.1
60

.2
.

https://www.MicrobiolSpectrum.asm.org


DISCUSSION

This study investigated expression changes of C. elegans and intestinal E. coli tran-
scriptomes, both over time and in different host genotypes. In addition, we sought to
investigate the influence of host-microbial interactions using coexpression analysis of
C. elegans and E. coli transcriptomes. By using multiple long-lived mutants, we were
able to investigate if their increased life span was at least partly attributable to bacte-
rial activity in any or all of the mutants. Although our analysis revealed multiple differ-
ences among samples based on both time point and genotype, differences according
to time point were more consistent and tended to be of a greater magnitude than
those associated with genotype.

However, one notable difference between genotypes was the increased expression
of bacterial glutathione metabolism (ko00480) at day 10 in the long-lived asm-3 [log
(LDA) = 2.808, P = 0.034] and daf-2 [log(LDA) = 3.001, P = 0.034] mutants. This enrich-
ment could be due to increased host immunity compared with the wild type, as gluta-
thione is an important antioxidant that helps protect cells from stress (36). However, E.
coli can produce and excrete glutathione (37), and the glutathione/glutathione disulfide

FIG 3 LEfSe analysis of expressed E. coli pathways for all samples grouped by time point. Differential genes were identified through LEfSe using Kruskal-
Wallis tests (P # 0.05), and enrichment was qualified using linear discriminant analysis, with a log(LDA) threshold of 2.0 for a pathway to be considered
enriched.

TABLE 5 C. elegans gene modules regulated by E. coli

E. coli regulator
GO terms
coexpressed

C. elegans genes
coexpressed

Slope of
regulator
over time

Phosphomethylpyrimidine synthase ThiC 15 67 20.173
Diguanylate cyclase DgcP 5 69 20.216
UDP-3-O-(3-hydroxymyristoyl)glucosamine
N-acyltransferase LpxD

7 149 20.050

30S Ribosomal protein S19 10 44 0.077
Glycosyltransferase 1 24 20.020
Small ribosomal subunit biogenesis
GTPase RsgA

2 25 0.072

Temporal Transcriptomics of E. coli in C. elegans
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couple in C. elegans is important for maintaining mucosal integrity in the midst of oxida-
tive stress (38, 39), which increases as worms age (40, 41). Furthermore, some studies
have been done on the benefits of administering probiotic bacteria to reduce host oxida-
tive stress (36), with one study explicitly tying Lactobacillus fermentum glutathione synthe-
sis and release to decreased colonic inflammation in a rat model (42). Therefore, future
work could investigate the possibility of glutathione being both synthesized and released
in residential E. coli within those two mutants and, if so, to what extent that contributes to
their increased life spans.

C. elegans also responded to bacteria. Lemon-Tree analysis revealed six bacterial
genes which may have regulated host expression (Table 5). One of these regulators,
DgcP is known to induce biofilm formation (43–45). This could be the case in our sam-
ples, as both this gene and biofilm pathways [ko02026, log(LDA) = 4.077, P = 0.021;
ko02025, log(LDA) = 4.085; P = 0.026; and ko05111, log(LDA) = 4.051, P = 0.031] were
less expressed at time points day 7.5 and day 10. Therefore, C. elegans genes identified
as regulated by DgcP likely became active in the host in response to E. coli biofilm for-
mation caused by DgcP, in concordance with a previous study that examined C. ele-
gans gene expression and biofilm formation (15). Interestingly, that study found that
biofilm formation was associated with increased C. elegans longevity (15), indicating
biofilm formation is not always deleterious. However, different host genes were associ-
ated with biofilm in this study, possibly due to using different bacteria or C. elegans ge-
notypes. Still, in combination, our study, along with that previous one, suggests biofilm
formation can induce changes in C. elegans host cell expression (that are not meant to
defend against those bacteria).

Another regulator, namely, LpxD, is involved in bacterial lipopolysaccharide (LPS)
biosynthesis. LPS is a component of the Gram-negative bacterial cell wall that contrib-
utes to bacterial pathogenicity (46), and C. elegans may modulate its interaction with
pathogenic bacteria through neuronal responses mediated by lipopolysaccharide
structure (47–49). The gene module regulated by LpxD includes gene ontology (GO)
terms, such as nitrogen response, phosphorylated nucleoside metabolism, amide
transport, nucleoside binding, IRE1-mediated unfolded protein response, response to
topologically incorrect proteins, and organic acid metabolism (Table S39). LPS acts in
the host as a pathogen-associated molecular pattern (PAMP), which activates an innate
immune response via the p38 MAPK pathway and downstream immune response
genes (50). Immune function of the p38 MAPK pathway has been shown to decline
through day 15 of adulthood in a process known as immunosenescence (51). Although
we saw this negative temporal expression pattern with LpxD expression, we saw no
GO terms clearly pertaining to immune response coregulated in this module, possibly
due to the relatively mild pathogenicity of E. coli. Instead, LPS in nonpathogenic bacte-
ria may be modulating host responses of the GO terms we identified.

Another group of C. elegans genes was identified as being regulated by phospho-
methylpyrimidine synthase (ThiC) expressed by E. coli. ThiC deals with thiamine biosyn-
thesis, which has been found to affect gene transcription and glucose metabolism in
mammals (52, 53). None of the C. elegans genes in this study are involved with glucose
metabolism or oxidation, but three genes are associated with responding to stimuli
(GO:0007635, GO:0009607, and GO:0044419). Additionally, several of the GO terms are
associated with the host’s immune response, namely, GO:0002376, GO:0004222, and
GO:0006952. Taken together, these terms indicate that our C. elegans was responding
to E. coli thiamine biosynthesis and expressing an immune response as a result.
Commensal bacteria are known to improve the host’s immune system (54), and this
module seems to provide one mechanism for that improvement, i.e., priming the
immune system, making it more ready to combat any future infections.

C. elegans class 1 and class 2 IIS genes were present in all of our Lemon-Tree core-
gulatory modules (Table S40). Class 1 genes are upregulated, and class 2 genes are
downregulated with DAF-16 nuclear localization, as class 1 genes are transcribed by
DAF-16 and class two genes by the DAF-16 anticorrelated factor PQM-1 (35). Coexpression
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of these classes indicates the presence of additional factors, such as SMK-1 and HSF-1
which have been shown to govern a specific subset of IIS genes, thereby allowing both
class 1 and class 2 genes to be coexpressed (55). In fact, transcription factors such as ELT-
7, NHR-28, and LEC-8 have known affinity for the DAF-16 associated element (DAE), and
each of these transcription factors were found to be highly coexpressed within different
regulatory modules in our coexpression analysis. Of the 80 class 1 and 2 genes present in
our coregulatory modules, though, only 42 had the DAF-16 binding element (DBE)
(GTAAACA or TGTTTAC) and/or the DAE (TGATAAG or CTTATCA) within 2,000 bp upstream
of the transcription start site of their first transcript (Table S40) (35). Furthermore, transcrip-
tion factors such as ELT-7, NHR-28, and LEC-8 have known affinity toward DAE, and each
of these transcription factors were found to be highly coexpressed within different regula-
tory modules in our coexpression analysis. These results indicate that the expression of
class 1 and class 2 genes is dependent on several factors in addition to DAF-16 and may
allow for a stimuli-specific transcriptomic response. It is notable that some gene modules
did have unique expressions of class 1 or 2 genes. Specifically, module 75 was composed
primarily of class 2 genes, indicating that the positive expression of this module over time
is associated with upregulation of class 2 genes (Table S40).

In conclusion, this is the first study to our knowledge to perform temporal transcrip-
tomic analysis to investigate both C. elegans and its associated bacterial gene expres-
sion, allowing us to observe temporal changes and interactions between them.
Notably, E. coli expression changed more over time than by host genotype, indicating
that host age impacted the residential bacteria more than physiological changes due
to genotype. Still, a comparative analysis with LEfSe revealed differences in E. coli
expression associated with genotype, of which some could have impacted host health.
Furthermore, Lemon-Tree analysis revealed that several specific bacterial genes may
have more directly regulated host expression. Future work could focus on these poten-
tial regulators and their effect on C. elegans expression, as well as on potential benefits
to host health due to bacterial expression, such as the biosynthesis of glutathione and
histidine. Additionally, methods development to increase the microbial signal relative
to host would be invaluable for confirming the trends and findings in this study, as
well as for any other work attempting to study C. elegans and its microbiome with
shotgun sequencing. Lastly, future work should measure the bacterial load within the
C. elegans to see potential changes over time or with respect to genotype. Overall, de-
spite the many remaining unknowns, this study represents a valuable contribution to
the growing work on the influence of the microbiome on host health and aging, as it
provides strong evidence of bacterial regulation of host genes over time.

MATERIALS ANDMETHODS
Strains and growth conditions. C. elegans strains N2, CB1370 [daf-2(e1370) III], DA1116 eat-2

(ad1116) II, and RB1487 asm-3(ok1744) IV were provided by the Caenorhabditis Genetics Center (CGC)
(NIH Office of Research Infrastructure Programs [P40 OD010440]). CB1370 was grown at 15°C, whereas
all other strains were grown at 20°C unless otherwise noted. Worms were grown on nematode growth
media (NGM; 0.25% peptone, 51 mM NaCl, 25 mM [KPO4], 5 mg/ml cholesterol, 1 mM CaCl2, 1 mM MgCl2,
and 2% agar). Worms were synchronized by supplementing NGM plates with 50 mM 5-fluoro-29-deoxy-
uridine (FUdR) to prevent eggs from hatching.

E. coli OP50 was procured from CGC, grown to an optical density of 0.6 in Luria Broth (US Biological),
and seeded onto NGM plates with 360 ml of OP50 each. All plates were prepared according to
Wormbook (56) and incubated for an additional 24 h at 20°C before worms were inoculated.

Transcriptomics sample preparation. Replicates of 12 age-synchronized plates for each worm
strain were prepared as follows. Gravid worms were allowed to grow one generation and subjected to a
bleaching protocol, leaving age-synchronized eggs (56). A total of 150 to 200 of these eggs were plated
onto NGM plates previously seeded with a standardized lawn of OP50. After 2 days, worms were trans-
ferred from NGM to NGM 1 FUdR plates using M9 and an electronic pipettor. Worms were thereafter
transferred to fresh NGM 1 FUdR plates no less than every 3 days. Worms were collected at 5, 7.5, and
10 days after the first transfer onto NGM 1 FUdR plates as follows. Worms were washed off plates with
M9 into a 15-ml conical tube and centrifuged for 1 minute at 450 � g, and the supernatant was aspi-
rated off, leaving the worm pellet intact. The pellet was washed with 10 ml M9 with 100 mg/ml gentami-
cin and centrifuged for 1 minute at 200 RPM once again, and the supernatant was aspirated and saved,
leaving the worm pellet intact. The wash and centrifuge steps were repeated until 10 washes were com-
pleted. An 11th wash was performed with regular M9. A total of 100 ml of each supernatant as well as
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several worms from the last wash of each sample were plated onto LB agar plates and incubated at
37°C. Plates were then monitored for the efficacy of washes on depleting nonintestinal bacterial loads
compared with a plate with several worms, which allowed some intestinal bacteria to grow. After the
washing steps were completed, the pellet was resuspended in 1 ml of M9 and flash frozen using liquid
nitrogen.

RNA extraction, library preparation, and sequencing. RNA was extracted from all samples using the
Quick-RNA miniprep plus kit (Zymo, Irvine, CA). Before extraction, samples were thawed on ice and then cen-
trifuged at maximum speed (21,130 � g) at 10°C for 7 minutes to pellet the worms. As much M9 (;800 to
900 ml) as possible was removed from each sample, and 600 ml of cold 1� DNA/RNA Shield (Zymo) was
then added to each sample and mixed with the pellet by pipetting. The entire volume was added to a lysis
tube provided by the kit. Samples were lysed for 2 minutes using a Disruptor Genie (Scientific Industries, Inc,
Bohemia, NY) and then spun down for 30 seconds at 13,000� g. The solid tissues and blood cells and subse-
quent RNA purification protocol was then followed as specified in the Zymo Quick-RNA miniprep plus kit
manual. RNA was eluted using 50ml of DNase/RNase-free water instead of 100 ml to increase concentration
and then quantified using a Qubit 4 fluorometer (ThermoFisher Scientific, Waltham, MA) and a 1� double-
stranded DNA (dsDNA) high-sensitivity (HS) kit (ThermoFisher Scientific). RNA extracts were stored at –80°C
until further processing.

Library preparation of all RNA samples was performed using the Trio RNA-Seq kit (Tecan Genomics,
Redwood City, CA) per the manufacturer’s instructions. All libraries were quality checked using the 2100
bioanalyzer and the high-sensitivity DNA kit (Agilent Technologies, Santa Clara, CA). The libraries were
combined into two separate pools in equimolar concentration and gel purified on a 2% agarose gel
using a gel purification kit (Qiagen, Frederick, MD). After purification, the libraries were quality checked a
second time using the 2100 bioanalyzer and the high-sensitivity DNA kit (Agilent Technologies) and
then shipped on dry ice to the DNA Technologies Core at University of California-Davis for sequencing.
Each library was sequenced on one lane of an Illumina HiSeq 4000 instrument with paired 150-bp reads.

Bioinformatics. The data quality was assessed using FastQC (57), generating average Q score reports
across all sequence files. Trimming was completed with the program fastp (58) using a sliding window filter of
4 bp with a minimum average quality of 28 and a minimum base quality of 15. Reads trimmed to fewer than
90 bp were discarded. Filtered reads were then processed in KneadData (59) to remove human contaminant
reads, rRNA, and C. elegans contaminant reads. A custom Bowtie 2 (60) database was created using a publicly
available C. elegans assembly (WBcel235) (61) and mapped against to remove C. elegans. Ribosomal E. coli
genes were obtained from NCBI, and C. elegans rRNA genes were obtained from Ensembl Biomart. Reads
matching the E. coli OP50 genome (GenBank accession number GCA_004355015.1, ASM435501v1) and C.
elegans assembly (WBcel235) were separated out, and the paired orientation of resulting reads was restored
using SeqKit (62). HUMAnN2 (63) was used to identify functional E. coli genes and pathways using the
Uniref90 database (64).

Functional genes that mapped to E. coli were used for downstream analyses and were regrouped as
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) terms (65). The core expression profiles of
time points and genotypes were determined using the QIIME1 “core_microbiome.py” script (66) to select only
genes that were expressed in at least 70% of samples within the group. Those core profiles were processed
with Tidyverse (67) and then visualized in R with the eulerr (68) and UpSetR (69) packages. E. coli annotations
underwent counts per million (CPM) normalization prior to LEfSe (70), NMDS, and PLS-DA analysis. The dis-
tance matrices for NMDS, PERMANOVA, and Adonis analysis were calculated through QIIME2 with the Bray-
Curtis distance metric. Adonis was performed through QIIME2 to see how much variation could be explained
by genotype (all four and four subsets where each genotype was omitted from a single subset) and time
point, as well as genotype and time point together. The subset Adonis analysis was performed to account for
the different number of genotypes and time points being a potential confounding factor when comparing
the amount of variation those two groupings explained. Pairwise PERMANOVA tests were also performed
through QIIME2. In total, 18 LEfSe comparisons were performed for genes (Table S2 to S19). KOs were then
regrouped into pathways using a custom Python script, and the same 18 comparisons were then run with
the resulting pathways table after first removing pathways that are associated with eukaryotic organisms, i.e.,
those in human diseases or organismal systems groups (Table S20 to S37). Pathway networks were visualized
for the three differentially expressed biofilm pathways identified by the LEfSe analysis for time point (Fig. 3),
as well as the glutathione pathway described in the Discussion using the pathview package in R with the
counts per million-normalized KO table. For each pathway, three networks were created, namely, specific, ge-
notype, and time point. Each specific network node was divided into 12 sections, with 1 per group (time point
by genotype) ordered as follows: day10_asm-3, day10_daf-2, day10_eat-2, day10_n2, day5_asm-3, day5_daf-2,
day5_eat-2, day5_n2, day7.5_asm-3, day7.5_daf-2, day7.5_eat-2, and day7.5_N2. Within the network diagrams
for the genotype figures, each node was split into four sections, namely, asm-3, daf-2, eat-2, and N2, and each
node was split into three sections within the time point networks, including day 10, day 5, and day 7.5. NMDS
and PLS-DA analyses were performed using the counts per million-normalized KO table through R using the
phyloseq and mixOmics packages, respectively, (71) with samples grouped by genotype and then again with
samples grouped by time point.

Lemon-Tree analysis (72, 73) was performed to identify gene coexpression modules and assign regu-
lators to those modules. A total of 3,081 putative C. elegans regulator genes with GO terms, including ki-
nase activity, signal transduction, regulation of expression, and regulation of DNA templated transcrip-
tion, were identified using Ensemble Biomart (74). Counts were CPM normalized using EdgeR (75, 76).
All 42 samples were used for clustering. Genes and transcripts were filtered using the EdgeR function
“filterByExpr” for having CPM of at least five in at least four samples (minimum group size), resulting in
9,880 C. elegans and 1,282 E. coli genes. Counts were normalized for different library sizes and variance
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of low count genes stabilized using the rlog function of DESeq2 and using the “blind false” option to
allow for group-specific corrections to variance (77). Finally, expression levels for each gene and tran-
script were standardized (subtract mean and divide by standard deviation) using R (78). All E. coli genes
were also included as potential regulators. This procedure left 8,081 C. elegans genes for the generation
of coexpressed gene modules. Twelve replicates of the initial “ganesh” cluster were performed.
Coexpression modules were filtered for having at least 10 transcript members. Assigned regulators were
filtered to include only those that scored in the top 1% of genes for those modules.

In order to identify modules corresponding to patterns of interest in the present study, mean expres-
sion over genes for each sample within each of the 137 (genes) modules (tight clusters) was used as a
response variable for an analysis of covariance (ANCOVA) (mean standardized rlog module expression of
;MUTANTjDAY) using R. Modules with significant terms (false discovery rate [FDR], #0.05) were
selected for further analysis. Modules were sorted by magnitude of the difference between groups in
mean expression change over time. GO enrichment analysis (FDR, #0.05) was then performed within
GOrilla (79). The set of nonregulatory C. elegans genes that was included in the clustering analysis above
was used as the reference gene set for enrichment analysis. Two thousand base pairs upstream of the
first transcript in each Worm Base entry for the IIS-regulated genes in our study were searched for the
forward and reverse sequences of the DAE and DBE as reported in reference 35.

Data availability. All raw sequencing data analyzed in this study have been uploaded to the NCBI
Sequence Read Archive (SRA) database under accession number PRJNA717670.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, XLSX file, 1.7 MB.
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