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Abstract 
The goal of this research was to determine the effects of the growth of inva-
sive plant Amur Honeysuckle (Lonicera maackii) on the rhizosphere bacterial 
community composition, and diversity in an urban wetland forest ecosystem. 
Bacterial communities from the rhizosphere of 5 L. maackii plants and con-
trol bulk soils that did not have any L. maackii were investigated at Nina Ma-
son Pulliam EcoLab (NMPE) using a culture-independent pipeline. Bacterial 
communities were characterized by PCR amplification and cloning 16S rRNA 
gene fragments following total DNA isolation from the soil samples. Microbi-
al communities associated with both L. maackii rhizosphere and control sites 
showed high bacterial diversity within each site and taxa unique to individual 
sites were observed. Phylogenetic analyses revealed 80% of 400 16S rDNA 
clones were classified as α-, β- and γ-Proteobacteria, Acidobacteria, Actino-
bacteria, Cytophaga-Flexibacter-Bacteroides (CFB) group, and Verrucomicro-
bia. Members of the Proteobacteria and Acidobacterium represented 66.5% 
and 14.5% of the clone library, respectively, whereas the remaining bacterial 
divisions each comprised less than 7% of the clone library. Twenty-five 16S 
rDNA clones could not be classified into any known bacterial divisions. Sta-
tistical analyses showed significant differences in the presence of L. maackii 
on the proportions of 16S rDNA clones affiliated with Proteobacteria and Aci-
dobacterium, suggesting bacterial community composition and structure does 
significantly change in the presence of L. maackii. However, sequence-based 
community analysis and the corresponding lack of intact microbial cultures 
limit understanding of the potential influences of enriched microbial taxa on 
plant hosts and their roles in ecosystem functioning. 
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1. Introduction 

Soil bacterial communities have significant impact on plant cover as pathogens, 
decomposers, or beneficial mutualists, influence nutrient cycling and solubiliza-
tion, as well as have potential to induce production of plant hormones in plants 
[1]. These impacts can range from highly positive to negative for the plants. 
Moreover, the impacts of rhizosphere microbes on individual host plants can al-
ter plant communities across the landscape. For example, the relative abundance 
of plant species in a Canadian meadow was correlated with the extent to which 
soil microbes are associated with each plant species. This relationship conferred 
positive impacts on host plant biomass; abundant plant species were more likely 
to experience positive feedbacks with their rhizosphere-associated microflora, 
while rare species tended to experience negative feedbacks [2]. Thus, soil micro-
bes, through their positive or negative impacts on individual plants, can be key 
determinants of plant community diversity and composition. Plants, in turn, have 
been shown to have significant influences on soil microbial communities [3]-[8]. 
Plants can have differential effects on microbial community size, composition, 
and diversity [9] [10]. In particular, root exudates can stimulate growth of bacte-
ria and fungi in the rhizosphere [11] [12] [13] [14]. While there is clear evidence 
for both positive [15] [16] and negative [17] [18] feedback between plants and 
soil microbes, most studies to date have failed to show a diverse array of interac-
tions between rhizosphere bacteria and plants. In particular, the potential influ-
ences of host plants on non-cultured bacteria, which are believed to represent 
most of the soil microflora, have received little attention. However, recent ad-
vances in sequencing technology offer the opportunity to explore the composi-
tion, structure, and diversity of soil microbes associated with distinct host plants 
in substantially more detail. Compared with culture-based methods, sequence-based 
analyses provide a means for exploring plant-associated microbial communities 
that is more representative of their phylogenetic complexity, providing the po-
tential for identifying novel plant-associated taxa while broadening our under-
standing of the diversity of plant-microbe associations.  

Non-native plant species are a worldwide problem with enormous ecological 
and economic consequences [19] [20]. Though many of these non-natives do not 
cause harm, many outcompete and crowd native species reducing biodiversity. 
There is substantial concern that the incidence and severity of these non-native or 
invasive species have increased in the last few decades as a result of environ-
mental changes at the local and global scale [19]. There is substantial concern 
over rate of establishments of invasive species in prairie ecosystems in the last 
few decades because of environmental changes at local (e.g., nitrogen deposition) 
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and global scales (e.g., climate) [21] [22] [23]. As well, the introduction and rate 
expansion of these invasive species is of great concern but is often hard to doc-
ument. The magnitude of these concerns is emphasized by the establishment of 
major International Soil Reference and Information Centers (ISRIC), and Mid-
west Invasive Species Information Network (MISIN) including Indiana Invasive 
Species Council (IISC) efforts to monitor invasive plants. Despite international 
concerns regarding the devastating impacts of invasive species on native plants, 
there remains a poor understanding of the factors regulating the establishment 
and intensity of these plants [24]. This lack of understanding is confounded by 
poor records of specific species and their extent. Consequently, methods to un-
derstand specific factors involved in establishment of specific species are essen-
tial [2] [25]. An example of a problematic invasive shrub that is of national con-
cern in the forests of the Eastern United States is Amur honeysuckle, L. maackii 
[26] [27] [28]. It is a species of honeysuckle in the family Caprifoliaceae that is 
native to temperate western Asia, specifically in northern and western China. 
Despite this, little is known of their relationships with the soil microflora or, 
specifically, their influences on soil microbial community composition or the 
extent to which plant-microbe feedbacks influence host establishment or longev-
ity. We believe that a better understanding of the rhizobacteria and soil biologi-
cal factors associated with the L. maackii shrub is required for designing novel 
strategies for controlling invasive species. Identifying bacterial phyla which are 
critical for the establishment of L. maackii and soil factors that affect their 
growth is therefore customary in its control.  

In this study, we used a molecular phylogenetic approach to characterize the 
composition and diversity of rhizosphere bacterial communities associated with 
Amur honeysuckle plant species, L. maackii to provide an explicit test of the 
hypothesis that invasive plant species support distinct and characteristic rhizos-
phere bacterial communities. We used a spatially stratified sample design to 
characterize the influences of L. maackii on bacterial community composition 
and diversity in soil. As hypothesized, we report significant differences in rela-
tive abundance of bacterial communities associated with L. maackii and control 
soil (away from L. maackii canopy) and discuss its implication for the establish-
ment or control in the wetland forest ecosystem.  

2. Material and Methods 

Urban forest sites, chosen plots and rhizosphere soil sample collections. The 
Nina Mason Pulliam EcoLab (NMPE) at Marian University, site conditions, and 
management of invasive species are described elsewhere. Rhizosphere soil (RS) 
samples were collected from two carefully designated plots of the NMPE Forest 
in Indianapolis, Indiana (Figure 1). The chosen sites (RS 39˚49'5.3"N, 86˚12'9.5"W; 
CS 39˚49'4.5"N, 86˚12'6.4"W) in the NMPE forest for the control plots (CS) did 
not have any L. maackii shrub whereas test plots (RS) have seedlings as well as 
some mature L. maackii shrubs. The soils on both sites have deep, medium 
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Figure 1. Location of Nina Mason Pulliam EcoLab showing sampling sites with L. maackii (RS) and soils without L. maackii (CS) 
in Indianapolis, Indiana, USA. 

 
textured loam soils and trees were 50 - 80 years old (A. Ahmad, pers. communi-
cation). The soil characteristics of the control and test plots selected for this 
study are given in Table 1. Five seedlings (4 - 5 years old) were randomly se-
lected for rhizosphere soil sampling during July 2018 and August 2019 from the 
test plot. Each seedling was gently lifted from the ground with the intact roots 
surrounded by abundant soil and the soil was gently shaken from the roots. 
Random egressed roots plus clinging soil were aseptically cut from the seedling 
approximately 3 cm from the root plug and placed in a 500 mL sterile bottle. The 
control plots (CS) were also sampled at the same time. After removing the top-
soil, soil cores 12 cm long were collected with a 2 cm soil corer (Lamotte soil 
corer; Garinger) to a depth of 100 mm. Soil cores were placed individually into 
plastic bags, transported to the laboratory on ice and stored at −20˚C. Before to-
tal DNA extractions, replicate soil samples were pooled to normalize variability. 
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Table 1. A description of plots with or without L. maackii in the Nina Mason Pulliam 
EcoLab (NMPE) an urban wetland forests site near Indianapolis, Indiana, USA. 

Plot Description Sample Codes Field Site Location 

Test 
Hennepin loam, conditioned by L. 

maackii growth 
RS2018.OTU# 
RS2019.OTU# 

NMPE, Indianapolis, IN 

Control Hennepin loam, and L. maackii absent 
CS2018.OTU# 
CS2019.OTU# 

NMPE, Indianapolis, IN 

 
These samples were maintained at approximately 4˚C and processed within 48 h 
to isolate DNA (as described below). 

Rhizosphere soil was collected by submerging roots plus clinging soil from 
two seedlings in 250 mL of sterile TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) 
for 20 - 25 min at room temperature with intermittent mixing by hand (one 
sample). The soil suspension was passed through a sterile mesh screen (1 mm 
pore size) to remove roots, small rocks, and large pieces of organic matter. An 
additional 50 mL of TE was added to rinse the screen and the suspension was 
transferred to a sterile blender chamber and blended for 30 s, at high speed. The 
liquid portion was decanted to a sterile centrifuge tube and spun at 300 xg at 4˚C 
for 10 min. The supernatant was centrifuged at 5000 xg at 4˚C for 10 min to pel-
let the microbial cell fraction. The pellet was washed once in TE, homogenized 
with a sterile toothpick, and stored at 4˚C until DNA extraction. The FastDNA-
PrepTM Kit (Qbiogene, Carlsbad, CA, USA) was used for DNA isolation from 
100 mg cell pellet per sample as previously described [1]. Purified DNA samples 
were stored at −20˚C. 

Polymerase chain reaction (PCR) amplification of 16S rRNA gene sequences 
from rhizosphere soil DNA (0.5 ng) was carried out in 25 µL reactions using 
universal bacterial primers 16S-336F and 16S-909R [29] [30] [31] as previously 
described for 16S rDNA clones from surface organic matter and mineral soil 
samples [32]. A reaction without DNA was prepared as a control. A Mastercyc-
ler® X50 Gradient 96 Temperature Cycler (Eppendorf, North America) was used 
to generate a gradient of four annealing temperatures (52.5˚C, 53.5˚C, 54.5˚C, 
55.5˚C) and two reactions were done at each temperature for each soil sample as 
previously described [11]. The PCR product size was visualized by gel electro-
phoresis and SYBRTM Green staining. PCR products from different annealing 
temperatures were pooled for each soil DNA sample and purified with QIAquick 
PCR purification spin columns (Qiagen, LLC, Maryland, USA). DNA concentra-
tions were quantified using a fluorometer. PCR products were stored at 32˚C. 
The PCR products amplified with the universal bacterial primers were ligated 
into the plasmid vector pCRTM-2.1-TOPO (3:1 insert to vector ratio) as per 
TOPO Cloning System technical manual (Invitrogen, Life Technologies, USA). 
The ligation products were purified and concentrated two-fold using Ultra-free 
MC Millipore Filters (Millipore, Bedford, MA, USA). An aliquot of the purified 
ligation product (25 ng) was transformed into the Escherichia coli host strain E. 
coli Top10FTM (Thermo Fisher Scientific, USA) as previously described [32]. 
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Serial dilutions were plated as described by the TA Cloning Kit manual, and 50 
clones were randomly selected to represent each of 20 composite rhizosphere 
soil samples. Clones were grown overnight in LB Broth (Thermo Fisher Scientif-
ic, USA) with ampicillin (100 µg·mL−1) and stored at −80˚C in 20% glycerol. 

Methods for plasmid DNA isolation from 16S rDNA clones and partial se-
quencing of the 16S rRNA gene inserts in the V3-V5 region (E. coli numbering) 
are described here [33]. The forward primer 336F  
5’-GTACTCCTACGGGAGGCAGCA-3’; and reverse primer 909R  
5’-CCCCGYCAATTCMTTTRAGT-3’. [31] [34] were employed. PCR clones were 
sequenced by commercially provided 16S sequencing services at GENEWIZ 
(Ahmad, unpublished, 2021). Complete information regarding GENEWIZ’s 16S 
rRNA-Sequencing services may be found at this link. Partial 16S rRNA gene se-
quences were searched using BLAST server (Basic Local Alignment Search Tool, 
National Center for Biotechnology Information (NCBI):  
http://www.ncbi.nlm.nih.gov/) to determine the closest matching sequences in 
the GenBank and to infer possible phylogenetic affiliations. Closely related 16S 
rRNA gene sequences originating from the same rhizosphere soil sample were 
aligned to determine similarity using alignment software contained in the CLC 
Genomics Workbench ver. 21.0.3 (Qiagen, USA). OTU calculations were based 
on the genetic distance between sequences and were used to estimate the rich-
ness and diversity of a sampled community. The partial sequence of a 16S rDNA 
clone was considered unique, included in phylogenetic analyses, and deposited 
in the GenBank if it had greater than four nucleotide differences within the re-
gion sequenced (approximately 575 nucleotide bases; 99% sequence similarity) 
compared to other 16S rDNA clones from the same rhizosphere soil sample.  

Partial 16S rRNA gene sequences of 16S rDNA clones were designated by a 
source code to identify the test (RS) and control (CS) plots, sampling year, fol-
lowed by a semicolon (.), and the clone number (Table 1). Phylogenetic analysis 
included building a series of trees based on variations in 16S clone sequence sets 
and GenBank sequences representing known and candidate bacterial divisions 
with 100 bootstraps and edited with programs contained in the CLC Genomics 
Workbench (Qiagen, USA). All alignment positions were included in the ana-
lyses, but insertions and deletions were not included in distance analyses. Final 
classification of 16S rDNA clones to a phylogenetic division or subdivision, or to 
an unclassified category, was based on combined results from the phylogenetic 
group represented by the closest matching sequences in the GenBank and phy-
logenetic tree analyses [11]. 

Finally, the resulting matches for each set of sequence data were summarized 
at various taxonomic levels and filtered to remove non-bacterial lineages. We 
performed Kolmogorov–Smirnov, goodness-of-fit test, ANOVA (analysis of va-
riance), and Tukey’s Honestly Significant Difference (HSD) analyses on tax-
onomy query results. All statistical analyses were performed using the R-statistical 
package (version 2.10; http://cran.r-project.org/). Indicator analysis is a compo-
site measure that considers both prevalence and relative abundance [35] [36]. 
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Indicator value analysis is a method to find indicator taxa and assemblages cha-
racterizing groups of sites [36]; it combines a taxa’s relative abundance with its 
relative frequency of occurrence in the various groups of sites. Indicator value 
analysis was performed on taxonomy query results. In these analyses, thresholds 
of 10 occurrences of a given bacterial taxon per DNA sample (i.e., a requirement 
that each bacterial taxon must be represented by 10 sequence reads in each DNA 
sample) and of occurrences of a bacterial taxon in 50% of samples from a field 
location was applied. Partial 16S rRNA gene sequences from unique clones were 
deposited in the GenBank database and assigned accession numbers __ to __ for 
clones classified as α-, β-, γ-, and δ-Proteobacteria, Actinobacteria, Cytopha-
ga-Flexibacter-Bacteroides (CFB) group, Acidobacterium, Planctomycetes, Fir-
micutes, and Verrucomicrobia; and __ to__ for unclassified 16S rDNA clones.  

3. Results and Discussion 

DNA yields from the rhizosphere soil samples: Five L. maackii seedlings har-
vested for RS plots showed approximately 75% - 95% root tip mycorrhizal colo-
nization per sample. This indicated similar soil conditions in the two consecu-
tive sampling years, 2019 and 2020. Total DNA yields from the ten rhizosphere 
soil samples were variable and ranged from 8.1 to 15.3 ng DNA per cell pellet 
(mean DNA yield = 11.7 ng DNA mg−1 cell pellet). DNA template concentra-
tions were standardized for all PCR reactions to 0.5 ng soil DNA per 25 µL reac-
tions to minimize potential sources of variability such as the amount of rhizos-
phere soil sampled and DNA yields from samples. We followed methods com-
monly used for sampling rhizosphere soil [37] [38] which included collection of 
soil clinging to plant roots after plant excavation from soil. 

Characterization of 16S rDNA clones: Twenty 16S rDNA clones for 10 each 
RS and CS soil samples, for a total of 400 clones, were partially sequenced. The 
length sequenced ranged from 550 - 575 nucleotides. Overall, 27% - 29% of the 
16S rDNA clone sequences (108 - 116 clones) shared 99% sequence similarity 
with another clone from the same soil sample. Identical or nearly identical bac-
terial 16S rRNA gene fragments have been recovered from non-rhizosphere for-
est soil samples from the NMPE site (A. Ahmad, data not shown). Retrieval of 
identical sequences from the same soil sample may indicate species abundant in 
soils or an artefact due to PCR. Full-length sequence analysis would be required 
to accurately determine the identical nature of cloned gene fragments. 

Phylogenetic analyses revealed that 86.5% of 400 rhizosphere soil 16S rDNA 
clones were classified as α-, β-, γ-, and δ-Proteobacteria, Actinobacteria, CFB 
group, Acidobacterium, and Verrucomicrobia (Figure 2). Members of Proteo-
bacteria represented 52.2% of the clone library and α-Proteobacteria had the 
greatest representation followed by β-, γ-, and δ-Proteobacteria except in 
CS2018, when β-Proteobacteria had 20 clones vs 16 α-Proteobacteria (Figure 3, 
Table 2). Acidobacterium comprised 14.25% of the clone library whereas the 
other bacterial divisions each comprised less than 7% of the clone library. Other 
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Figure 2. Classification of 16S rDNA clones (n = 400) from rhizosphere (RS) and con-
trol soil (CS) samples from NMPE into bacterial phylogenetic groups and showing per-
centage prevalence of the cloned library of RS soils α-Proteobacteria; β-Proteobacteria; 
γ-Proteobacteria; δ-Proteobacteria; Actinobacteria; CFB group; Acidobacterium; Firmi-
cutes, Planctomycetes, Verrucomicrobia and unclassified clones.  
 
studies have indicated that α-Proteobacteria members were most abundant in 
16S rDNA clone libraries from non-rhizosphere forest soil samples [39]. In con-
trast, Acidobacterium members were most abundant in clone libraries from 
Arizona pinyon pine rhizosphere and bulk soil samples [40]. The relative abun-
dance of Actinobacteria for both the RS and CS soils in this study was substan-
tially less compared to clone libraries of mineral soil from forests [39] and rhi-
zosphere soil from grassland plant species [41]. Twenty-five 16S rDNA clones 
(6.25% of the clone library) could not be classified into known bacterial divisions 
based on publicly available 16S rRNA gene sequence information and phyloge-
netic analyses. Many of these clones formed bootstrap-supported clusters with 
each other and GenBank member sequences were not closely related (results not 
shown). Unclassified clones with chimeric structures were not detected upon 
examination of long-distance base pairing in the secondary DNA structure (A. 
Ahmad, unpublished results). 

Phylogenetic analyses revealed that 80% of 16S rDNA clone sequences from 
both CS and RS soils formed bootstrap-supported clusters that contained Gen-
Bank member sequences originating from diverse soil sources, prairie and aqua-
tic environments [23] [38] [42]. The remaining clones either were represented in 
eight bootstrap-supported clusters which excluded GenBank member sequences 
(266 clones which represented Proteobacteria and Acidobacterium) (Table 2). 
These 16S rDNA clone sequences may represent members of novel lineages  
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Figure 3. Phylogenetic tree of α-Proteobacteria partial 16S rRNA gene sequences representing 
43 rhizosphere 16S rDNA clones and 33 control soils from the NMPE forest soils and 17 
reference sequences from the RDP database representing various groups are shown. The 
number of rhizosphere 16S rDNA clones represented in each cluster is: cluster 1: 41 
clones; cluster 2:29 clones; cluster 3: 29 clones; cluster 4: 10 clones; cluster 5: two clones; 
cluster 6: 13 clones; cluster 7: seven clones; and cluster 8: no clones, the cluster is represented 
by two GenBank member sequences. Two clones, C47.23PG and N42.38PG, were not af-
filiated with the eight proposed subdivisions of Acidobacterium.  
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Table 2. Summary of the 16S rDNA clone affiliation in phylogenetic tree clusters based 
on the most closely related GenBank member sequences included in treesa and present in 
clusters. 

Phylogenetic tree cluster affiliation Number of clusters 

α-Proteobacteria  

Rhizobiaceae group 3 

Acetobacteriaceae 3 

Caulobacter group 1 

Hyphomicrobium 2 

No known cultivated relative (GenBank sequence(s) excluded from clusters) 6 

Number of single sequences not in clusters: 8 

β-Proteobacteria  

Burkholderia group 5 

Comamonadaceae 2 

Spirallaceae 1 

Nitrosomonadaceae 2 

Rhodocyclus group 1 

No known cultivated relative (GenBank sequence(s) excluded from clusters) 5 

Number of single sequences not in clusters: 3 

γ-Proteobacteria  

Enterobacteriaceae 2 

Pseudomonadaceae 1 

Xanthomonas group 2 

No known cultivated relative (GenBank sequence(s) excluded from clusters) 2 

Number of single sequences not in clusters: 3 

δ-Proteobacteria  

Desulfuromonas group 2 

Myxobacteria 1 

No known cultivated relative (GenBank environmental sequence(s) in clusters) 2 

Number of single sequences not in clusters: 5 

CFB group  

Flavobacteriaceae and Flexibacter group 2 

Flavobacteriaceae and Cytophagaceae 2 

Acidobacterium 5 

Actinobacteria 1 

Verrucomicrobia 3 

 
within Proteobacteria and Acidobacterium that have not been previously re-
ported. A summary of the cluster affiliation from all phylogenetic trees is pre-
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sented in Table 2 and the highlights for Proteobacteria and Acidobacterium are 
discussed below. Detailed phylogenetic trees were not included in this paper due 
to their size and complexity (A. Ahmad, unpublished). 

Proteobacteria. Two hundred and nine (52%) 16S rDNA clone sequences were 
affiliated with α-, β-, γ-, and δ-Proteobacteria and were related to 16 bacterial 
families and groups representing cultivated bacterial genera (Table 2). In con-
trast, 3.5% of the Proteobacteria 16S rDNA clone sequences were present in 
phylogenetic tree clusters containing only uncultivated GenBank representatives. 
The largest cluster of related Proteobacteria 16S rRNA gene sequences consisted 
of 33 clones affiliated with Burkholderia, also represented as cluster 1 in the 
β-Proteobacteria tree (data not shown), most probably has an important role in 
NMPE rhizosphere ecology. Burkholderia species are nutritionally versatile, 
common residents of rhizosphere soil, and beneficial attributes of some mem-
bers include nitrogen fixation, plant growth promotion and biological disease 
control [43]. Only eleven of the 33 16S rDNA clone sequences shared 99% se-
quence similarity with other clones originating from the RS soil sample suggest-
ing high diversity in the Burkholderia group sequences (Figure 4). At the same 
time, a notable feature of this cluster is that RS sequences were identical or near-
ly identical to partial 16S rRNA gene sequences from CS sites indicating some 
conserved nature of the 16S rRNA gene in the recovered Burkholderia group 
sequences from NMPE sites.  

Although Pseudomonas is also recognized as a common rhizosphere colonist [44], 
19 of the 200 rhizosphere 16S rDNA clone sequences formed a bootstrap-supported 
cluster with GenBank member Pseudomonas sequences (data not shown). Cloned 
16S rRNA genes affiliated with Pseudomonas were infrequently recovered from 
grassland rhizosphere soil samples [45]. Pseudomonas were readily cultivated from 
mineral soil samples though a significantly greater proportion of Pseudomonas 
16S rRNA gene sequences were cloned from CS soil samples compared to RS. 
Eleven clones affiliated with Pseudomonas were obtained from CS at the NMPE 
sites. Further research is warranted to examine rhizosphere-associated Pseudomonas 
abundance and diversity from NMPE sites. Twenty-one clones of Rhizobiaceae 
group sequences were recovered from RS rhizosphere soil and six from CS sam-
ples at the two NMPE sites (data not shown). Though the vegetation present on 
NMPE plots does not include leguminous plants (A. Ahmad, personal commu-
nication), it is also possible that Rhizobium is a native member of non-legume 
rhizospheres.  

Acidobacteria: Fifty seven 16S rDNA clone sequences were affiliated with seven 
of the eight monophyletic Acidobacterium subdivisions proposed by Hugen-
holtz and co-workers [46] indicating broad diversity and potential ecological 
significance of this bacterial division in NMPE rhizospheres (Table 2). Seven-
ty-four percent of the clone sequences were affiliated with Acidobacterium sub-
divisions 1, 2 and 3. The sequences did not cluster with GenBank member Ho-
lophaga and Geothrix 16S rRNA gene sequences which belong to Acidobacterium 
subdivision 8 (Data not shown). Full-length sequence analysis is needed to further 
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Figure 4. Bootstrap-supported cluster of Burkholderia group partial 16S rRNA gene sequences ex-
tracted from a phylogenetic tree containing Proteobacteria16S rDNA clone sequences from NMPE fo-
rests16S rDNA clones. Partial 16S rRNA gene sequences from the Genbank are designated by the ac-
cession numbers. 

 
explore the affiliation of Acidobacterium clones. Although Acidobacterium has 
few cultivated members, DNA sequences from uncultivated representatives have 
been frequently recovered from soil [46] [47] including forest environments [39] 
[48]. 

Comparison of bacterial community profiles of CS and RS of NMPE sites. Few 
different trends in community profiles were apparent among 16S rDNA clones 
from the RS and CS plots in the NMPE sites. The relative abundance of Proteo-
bacteria was greatest for CS plot, followed by Acidobacterium (Table 3). Statis-
tical analyses revealed that within the Proteobacteria, the trend from highest to 
lowest relative abundance was α-, β-, γ-, and δ-Proteobacteria respectively, for both 
the CS and RS plot sites and showed significant NMPE site effects. All likelihood  
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Table 3. Classification of 16S rDNA clones from NMPE plot sites into bacterial phyloge-
netic groups. 

Phylogenetic groups Number of 16S rDNA clones 

 RS-2018 CS-2018 RS2019 CS-2019 Total 

Proteobacteria, total 46 57 52 54 209 

α-Proteobacteria 23 16 20 17 76 

β-Proteobacteria 11 20 16 17 64 

γ-Proteobacteria 9 13 12 15 49 

δ-Proteobacteria 3 7 4 5 19 

Uncultivated Proteobacteria 4 3 2 3 12 

Acidobacteria 12 16 13 16 57 

Actinobacteria 5 5 7 3 20 

CFB group 5 2 3 5 15 

Firmicutes 6 8 7 5 26 

Planctomycetes 3 8 4 7 22 

Verrucomicrobia 5 3 4 3 15 

Unclassified, total 5 2 10 8 25 

Total 100 100 100 100 400 

 
ratio P values exceeded 0.2 when analyses were completed for Proteobacteria at 
the division level and for individual analyses of α-, β-, and γ-Proteobacteria. For 
Acidobacterium, P value (testing for plot effects) was approximately 0.06 and the 
magnitudes of differences in the number of Acidobacterium clones among sites 
were not dramatic. The numbers of 16S rDNA clones belonging to other bac-
terial groups were too low for statistical analyses. Felske and Akkermans [49] al-
so found more similarities than differences in community profiles when they ex-
amined temperature gradient gel electrophoresis fingerprints from 160 soil sam-
ples representing three grassland field sites.  

Examination of the source of 16S rRNA gene sequences within individual 
bootstrap-supported clusters from phylogenetic trees provided a better compar-
ison of the bacterial community profile from different NMPE soil sites. This ap-
proach may have more biological relevance as opposed to a general analysis of 
the relative abundance of 16S rDNA clones belonging to individual bacterial di-
visions or subdivisions. Clusters were selected that contained four or more mem-
bers (a minimum of 1% of the clone library) and that were supported by boot-
strap values > 80 to allow for comparisons of related 16S rRNA gene fragments. 
Only 17 of the 41 clusters each contained one or more 16S rRNA gene fragments 
originating from the two NMPE sites. Therefore, it was less common for phylo-
genetic tree clusters to contain related 16S rRNA gene fragments representing 
16S rDNA clones from both RS and CS plot sites. Only four clusters had more 
than six clones, and three of these clusters (including the Burkholderia group 
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cluster, Figure 4) each contained one or more 16S rRNA gene fragments origi-
nating from the RS plot sites. The above results indicate that the rhizosphere en-
vironment generated by L. maackii may have exerted a stronger selective pres-
sure in determining the rhizosphere bacterial community than soil conditions 
prevailing in CS soils. Historically, it has been thought that rhizosphere microbi-
al populations are directly or indirectly related to root exudates [50] indicating 
the importance of the host plant. Numerous studies under field and controlled 
conditions have reported the importance of the host plant and/or soil factors in 
influencing the composition of rhizosphere bacterial communities [51] [52] [53]. 
PCR-based methods have proved valuable in generating cultivation-independent 
microbial diversity data. Yet, it is recognized that PCR artefacts may cause biases 
[54] and the relative proportions of different bacterial groups represented in 
clone libraries may not reflect the relative proportions present in template DNA 
samples [55]. The analysis of multiple soil samples representing host plant or 
soil types strengthens the conclusions which can be drawn from bacterial diver-
sity studies. 

4. Conclusion 

Management practices such as controlled burns, tree harvesting, site preparation 
and subsequent planting of native seedlings can result in changes in the soil en-
vironment. In this study, we addressed two main questions about NMPE soils: 1) 
What the bacterial community profile is in the L. maackii rhizosphere soils? 2) 
Does this profile differ from the control soils devoid of L. maackii? The 16S 
rDNA clone library from NMPE LM rhizosphere soils represented seven known 
bacterial divisions. There were significant site-effects on the relative abundance 
of 16S rDNA clones belonging to Proteobacteria or Acidobacterium which to-
gether comprised 66.5% of the clone library. Phylogenetic analyses indicated that 
16S rRNA gene fragments from CS and RS corresponding to different NMPE 
sites only somewhat group together in bootstrap-supported clusters. These re-
sults suggest that the LM rhizosphere is a niche that supports extremely diverse 
microbial communities which though shares similar but not identical profiles in 
the control soils. Torsvik and coworkers [56] stress that information about bac-
terial communities and their diversity is required to explore questions regarding 
the impact of environmental factors on ecosystem function. However, Staddon 
and co-workers [57] note that information is lacking about the variability of soil 
microbial communities in forest ecosystems. This study established a library of 
diverse 16S rRNA gene fragments from NMPE rhizosphere soil which can be 
used to construct specific DNA primers and probes to target bacterial groups of 
interest. Microbial indicators could prove valuable for assessments of soil quality 
[58] relating to ecological forest management [57]. Future studies on NMPE sites 
can be strengthened by using combinations of molecular methods to profile and 
fingerprint whole rhizosphere bacterial communities. Furthermore, a unique op-
portunity exists for future investigations into invasive tree species addressing the 
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relationship between soil bacterial communities and forest ecosystem functions 
through integration with other forest sites across climatic gradients in North 
America. 
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