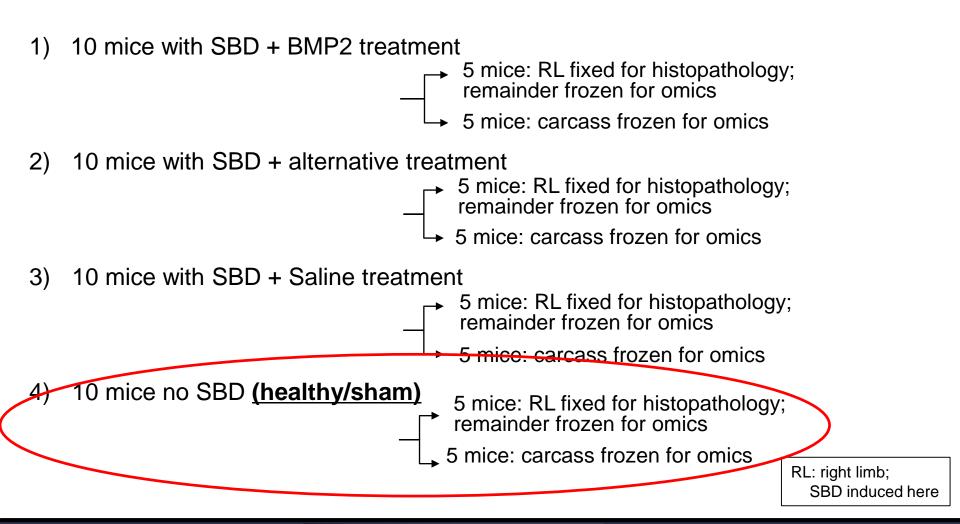
Network Analysis of Skeletal Muscle During Spaceflight in Male Mice

Michael Savaglio IU School of Medicine, Department of Orthopaedic Surgery

MARIAN UNIVERSITY

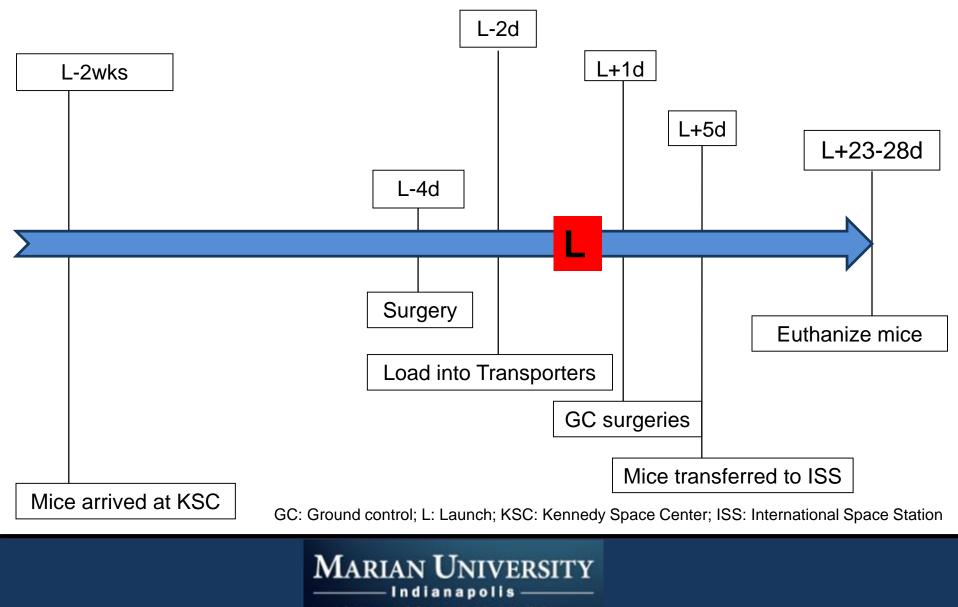
Disclaimer

 The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as official Department of the Army position, policy, or decision, unless so designated by other official documentation.

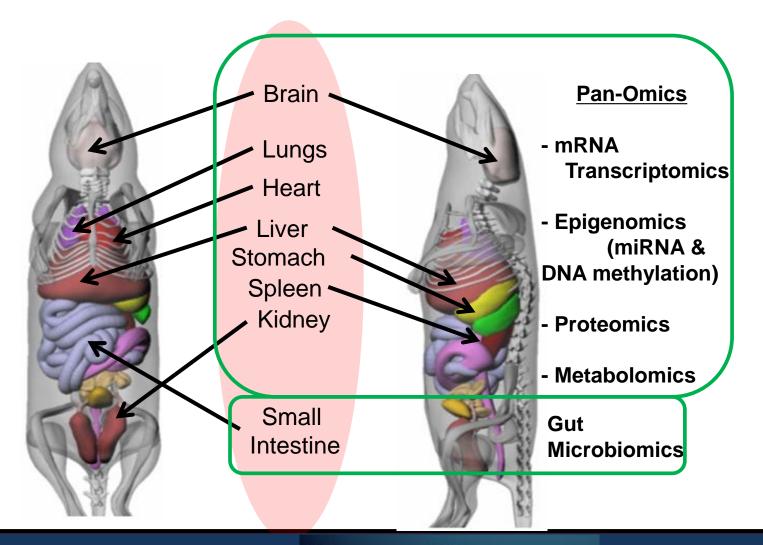


Background

- The unloading associated with spaceflight results in rapid loss of bone and muscle tissue (Stein, T., European Journal of Applied Physiology, 2012)
- Loss of bone and muscle tissue presents a challenge for long term occupation of space(Stein, T., European Journal of Applied Physiology, 2012)
- In orthopaedics, many patients spend prolonged periods non-weight bearing, especially after traumatic injury (Kershaw, C., et al., Clinical Orthopedics and Related Research, 2012)
- The associated atrophy may impair healing and it is important to understand the mechanisms surrounding this (Androjna, C. et al., Clinical Review Bone Mineral Metabolism, 2012)
- This is the first time that skeletal muscle changes have been studied in male mice during spaceflight

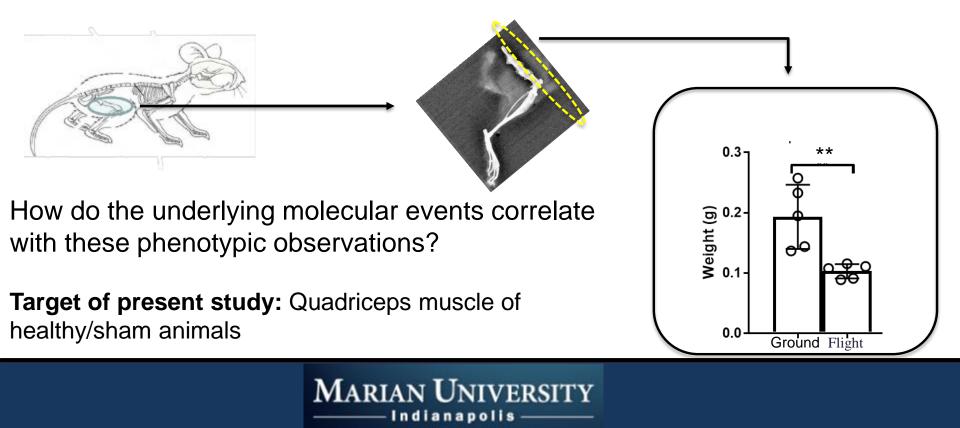


Experimental Design

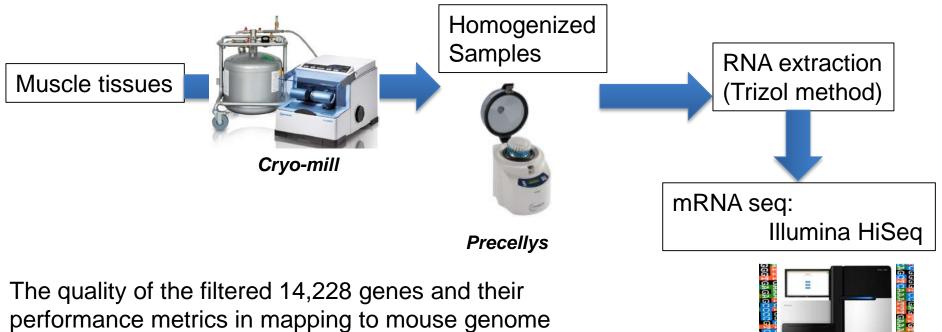


Temporal Work-Breakdown Structure

Tissues/Samples to Investigate


MARIAN UNIVERSITY

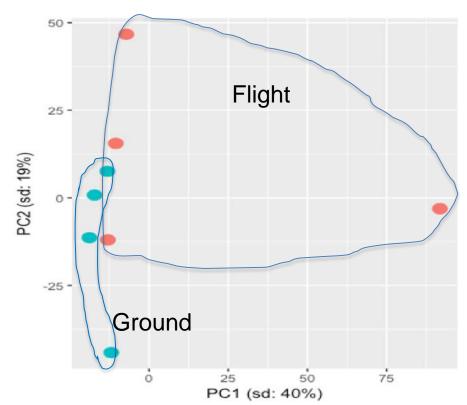
Objective of this presentation


Phenotypic observation so far....

Adverse effects of spaceflight on musculoskeletal health

> Muscle mass was reduced in healthy/sham mice in spaceflight

Molecular Assay


	Raw read counts/ gene			Map to Genome: Stats		
	Min	Max (M)	Mean (M)	Min	Max	Avg
Ground Sham	12	1.3	0.02	65.5%	79.5%	74.1%
Flight Sham	16	1.4	0.02	77.5%	81.5%	79.5%

MARIAN UNIVERSITY

Indianapolis -

Principal Component Analysis

- > 840 differentially expressed genes (DEG) met t-test *p*<0.05
- > 19 genes met False Discovery Rate (FDR) 0.1

14 genes met FDR 0.05

MARIAN UNIVERSITY

— Indianapolis —

Genes meeting FDR 0.1

_						
	Symbol	Log(FC)	FDR	Gene Name	Location	Туре
	TNNT1	-3.6	1.8 E-4	troponin T1, slow skeletal type	Cytoplasm	other
	MYH7	-5.2	6.8 E-4	myosin heavy chain 7	Cytoplasm	enzyme

5 genes (all down regulated) are related to Myosin proteins

Myosin:

- General Molecular motors
- Interact with actin filaments: Utilize energy to generate mechanical force

GOLGA7B	1.4	0.03	golgin A7 family member B	Other	other
3 genes (all down regulated)					
are related to Troponin proteins					

Troponin:

Regulate the myofibril contractile apparatus of striated muscles

PFN2	-0.8	0.08	profilin 2	Cytoplasm	enzyme
DCAF4	0.9	0.09	DDB1 and CUL4 associated factor 4	Nucleus	other

MARIAN UNIVERSITY

Indianapolis -

Functional Analysis and Significantly Regulated Networks

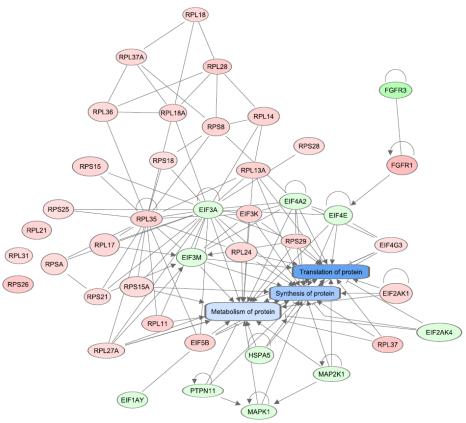
Selection criteria of biological functions/networks of interest:

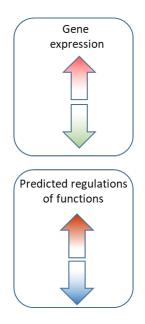
- Significantly enriched by differentially expressed genes (840 genes, p<0.05) -log(p value) < 1.3</p>
- Degree of regulation (z score)

Highly inhibited

Highly activated

	Involved with protein metabolism	 ,,	nginj activatea
	Canonical Networks	-log(p-value)	z-score
-<	EIF2 Signaling	18.5	2.8
	GPCR-Mediated Nutrient Sensing	0.283	2.0
	Cell Cycle: G1/S Checkpoint Regulation	1.15	1.3
	p53 Signaling	0.771	1.3
	Type I Diabetes Mellitus Signaling	1.1	-2.0
	STAT3 Pathway	4.47	-2.1
	Ephrin Receptor Signaling	1.15	-2.3
\subset	Integrin Signaling	3.8	-2.3


Involved with myogenesis


Integral factor of muscle development

MARIAN UNIVERSITY

Indianapolis -

Eukaryotic Initiation Factor (eIF2) Signaling

Activated eIF2 signal induced inhibition of protein synthesis, translation and metabolism

MARIAN UNIVERSITY

Indianapolis -

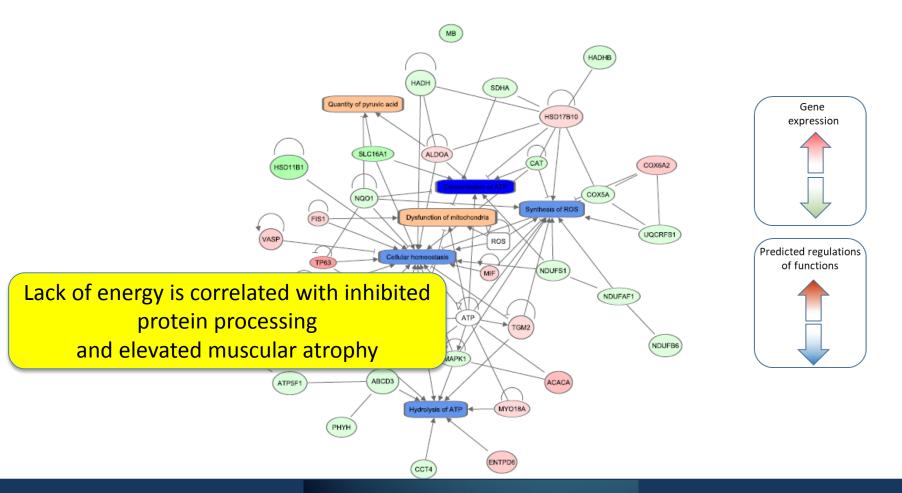
Functions Related to Muscle and Proteins

Biological Function

Status in Spaceflight

166 genes linked to Protein synthesis and degradation

hibited hibited hibited
hihitad
mbited
hibited
hibited
ctivated
hibited
hibited
hibited
ctivated
ctivated
o change


Indianapolis

Additional Functions of Interest

Biological Function	Status in Spaceflight				
22 gene linked to Ca+2 signal					
Ca+2 burden	Inhibited				
Muscular contraction (GEO term)	Activated				
Contractility of muscle/ Muscular inotropy	Inhibited				
Contraction of striated muscle	Inhibited				
Formation of muscle	No change				
Morphology of muscles	No change				
differentiation of muscle	Activated				
44 genes linked to energy production and mitochondrial dysfunction					
cellular homeostasis	Inhibited				
ATP hydrolysis	Inhibited				
Concentration of ATP	Inhibited				
Hydrogen peroxide	Inhibited				
Synthesis of ROS	Inhibited				
Quantity of pyruvic acid	Activated				
Dysfunction of mitochondria	Activated				

MARIAN UNIVERSITY

Energy Network- Inhibited in Space

MARIAN UNIVERSITY

Conclusions

- Spaceflight-induced stress including prolonged weightlessness potentially coordinated with reduced muscle synthesis and contractibility, and activated proliferation.
- The reduced mass of the quadriceps is possibly linked to changes in networks such as eIF2 signaling, integrin, and calcium signaling, as well as down regulation of genes related with troponin and myosin.
- A comprehensive deprivation of energy is suggested. Protein synthesis and metabolism, lipid synthesis and metabolism, and ATP hydrolysis and concentration were reduced. In parallel, mitochondrial dysfunction was activated. The energy deprivation is correlated with reduced mass of quadriceps.
- In the near future, we hope metabolomic analysis will increase our confidence in our current findings, and give deeper insight into the processes taking place.

Acknowledgments

USACEHR

Raina Kumar

Alison Hoke

Bintu Sowe

Dana Hamad

Stephan Butler

Duncan Donohue

Rasha Hammamieh (PI)

Aarti Gautam (co-PI)

Nabarun Chakraborty

DoD STP Carolynn Conley

James McLeroy

Melissa Kacena (PI)	RR4
Paul Childress	Team

<u>Penn State</u> David Waning

IU School of Medicine

NASA

MARIAN UNIVERSITY

Questions?

SPAC

References

1. Androjna, C., McCabe, N., Cavanagh, P. and Midura, R. (2012). Effects of Spaceflight and Skeletal Unloading on Bone Fracture Healing. *Clin. Rev. Bone Mineral Metab.*, (10), pp. 61-70

2. Kershaw, C., Cunningham, J. and Kenwright, J. (1993). Tibial External Fixation, Weight Bearing, and Fracture Movement. *Clinical Orthopaedics and Related Research*, (293), pp.28-36.

3. Stein, T. (2012). Weight, muscle and bone loss during space flight: another perspective. *European Journal of Applied Physiology*, 113(9), pp.2171-2181.

