Work

Muscle Regulatory Factors Regulate T1R3 Taste Receptor Expression

Public Deposited

MLA citation style (9th ed.)

Sato, T, et al. Muscle Regulatory Factors Regulate T1r3 Taste Receptor Expression. . 1225. mushare.marian.edu/concern/generic_works/ee7faff2-5897-4537-8cfa-bdc126aa1794.

APA citation style (7th ed.)

S. T, E. Y, O. M, K. S, Y. T, S. Y, T. T, H. S, F. Y, & L. J. W. (1225). Muscle Regulatory Factors Regulate T1R3 Taste Receptor Expression. https://mushare.marian.edu/concern/generic_works/ee7faff2-5897-4537-8cfa-bdc126aa1794

Chicago citation style (CMOS 17, author-date)

Sato, T., Enoki, Y., Okubo, M., Kokabu, S, Yoda, T., Seta, Y, Toyono, T. et al. Muscle Regulatory Factors Regulate T1r3 Taste Receptor Expression. 1225. https://mushare.marian.edu/concern/generic_works/ee7faff2-5897-4537-8cfa-bdc126aa1794.

Note: These citations are programmatically generated and may be incomplete.

T1R3 is a T1R class of G protein-coupled receptors, composing subunit of the umami taste receptor when complexed with T1R1. T1R3 was originally discovered in gustatory tissue but is now known to be expressed in a wide variety of tissues and cell types such the intestine, pancreatic ?-cells, skeletal muscle, and heart. In addition to taste recognition, the T1R1/T1R3 complex functions as an amino acid sensor and has been proposed to be a control mechanism for the secretion of hormones, such as cholecystokinin, insulin, and duodenal HCO3(-) and activates the mammalian rapamycin complex 1 (MTORC1) to inhibit autophagy. T1R3 knockout mice have increased rate of autophagy in the heart, skeletal muscle and liver. Thus, T1R3 has multiple physiological functions and is widely expressed in vivo. However, the exact mechanisms regulating T1R3 expression are largely unknown. Here, we used comparative genomics and functional analyses to characterize the genomic region upstream of the annotated transcriptional start of human T1R3. This revealed that the T1R3 promoter in human and mouse resides in an evolutionary conserved region (ECR). We also identified a repressive element located upstream of the human T1R3 promoter that has relatively high degree of conservation with rhesus macaque. Additionally, the muscle regulatory factors MyoD and Myogenin regulate T1R3 expression and T1R3 expression increases with skeletal muscle differentiation of murine myoblast C2C12 cells. Taken together, our study raises the possibility that MyoD and Myogenin might control skeletal muscle metabolism and homeostasis through the regulation of T1R3 promoter activity.

Creator
Language
Identifier
Keyword
Date created
Resource type
Source
  • Biochemical and Biophysical Research Communications

  • com_fp_8

Rights statement

Relations

Items