Automated Suturing For Pacemaker Lead Placement Via Video Guided Minimally Invasive Surgical Access

Nicholas B. Cavanaugh  
*Marian University - Indianapolis, Duke University Department of Surgery, Durham, NC, ncavanaugh122@marian.edu*

JW Turek  
JA Siordia  
JS Sauer  
PA Knight

Follow this and additional works at: https://mushare.marian.edu/mucom_spr

Part of the Cardiology Commons

Recommended Citation

Cavanaugh, Nicholas B.; Turek, JW; Siordia, JA; Sauer, JS; and Knight, PA, "Automated Suturing For Pacemaker Lead Placement Via Video Guided Minimally Invasive Surgical Access" (2017). *Student Publications and Research*. 16.  
https://mushare.marian.edu/mucom_spr/16

This Poster is brought to you for free and open access by the College of Osteopathic Medicine at MUShare. It has been accepted for inclusion in Student Publications and Research by an authorized administrator of MUShare. For more information, please contact emandity@marian.edu.
Automated Suturing for Pacemaker Lead Placement via Video Guided Minimally Invasive Surgical Access

1Turek JW, 2Siordia Jr. JA, 3Cavanaugh NB, 3Sauer JS, 2Knight PA
1Pediatric Cardiac Surgery, University of Iowa Stead Family Children’s Hospital, Iowa City, IA
2Division of Cardiac Surgery, University of Rochester, Rochester, NY, 3LSI Solutions, Victor, NY

Background
The placement of permanent and temporary cardiac epicardial pacemaker leads through minimally invasive cardiac surgery (MICS) access remains a challenge. A reliable ergonomic approach for remote lead placement requires improved technology. We present a novel system to enable the remote placement of epicardial leads using automated suturing devices and videography.

Methods
Automated technology was developed for epicardial lead placements. For permanent lead placement, an adjustable shaft dual needle suturing device simultaneously placed both bites of a horizontal mattress suture into the targeted tissue. Leads were advanced into position using specialized introducers. Each lead was secured with two titanium fasteners. Placement was examined on ex vivo porcine hearts for attachment tensile strength. Automated lead suturing was performed via a subxiphoid approach on a cadaver model, a video assisted thoracoscopic surgery (VATS) approach in an ex vivo porcine thorax and a left lateral non rib-spreading mini-thoracotomy approach in a clinical setting. For non-permanent leads, a customized connector was developed to attach to the end of a commercially available temporary pacemaker wire (after removal of its needle) to enable the suturing device needle to pull the pacemaker wire through the targeted tissue.

Results
Permanent epicardial leads were successfully secured in all models and in the initial MICS clinical experience. Lead suture placement required less than 3 seconds to complete once the automated device tip was positioned. Lead holding force testing on porcine hearts demonstrated that the suture and titanium fasteners always remained intact, while the ventricular and atrial tissue yielded at mean holding forces of 2.0kgf and 1.5kgf, respectively. The automated suturing device consistently drew connectors and their attached temporary epicardial pacemaker lead wires through ex vivo porcine tissue. Secured epicardial pacemaker leads were placed successfully in 3 patients with no intraoperative or postoperative complications with minimal pain.

Technology
Automated suturing technology and videography enabled MICS permanent and temporary epicardial pacemaker lead placement. Experimental models demonstrated rapid deployment and excellent fixation strength. The success of this automated epicardial lead placement research study and initial clinical use encourages further exploration towards improving adult and pediatric patient outcomes.

Conclusions

Disclosures
Joseph W. Turek – No Disclosures
Juan A. Siordia Jr. – Receives fellowship funding from the University of Rochester Medical Center contributed by LSI SOLUTIONS®
Nicholas B. Cavanaugh – No Disclosures
Jude S. Sauer – Founder, President, and CEO of LSI SOLUTIONS®
Peter A. Knight – No Disclosures